CURRENT/VOLTAGE DACS WITH ADCS & DIO ON PCI EXPRESS MINI CARD

HARDWARE MANUAL

MODELS

MPCIE-DAAI16-8F, MPCIE-DAAI16-8A, MPCIE-DAAI16-8E MPCIE-DAAI12-8F, MPCIE-DAAI12-8A, MPCIE-DAAI12-8E

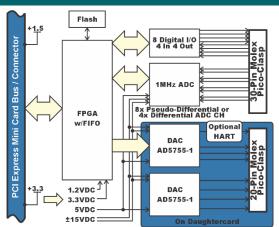
ACCES I/O Products, Inc. 10623 Roselle Street San Diego CA 92121-1506 USA 858 550 9559 800 326 1649 sales@accesio.com www.ACCESIO.COM

MADE IN THE USA

CHAPTER 1: QUICK START

It is recommended that you install the software package before installing the PCI Express Mini Card (mPCle) in your computer. You can install the software¹ using a stand-alone installer downloaded from the product page Manuals / Software tab on our website.

Run the installer you downloaded and follow the prompts to install the software for your device.


Please note: during the installation you may be prompted regarding the installation of non-WHQL-certified drivers; please carefully confirm the digitally signed source of the drivers and accept the installation.

Once the software has been installed, shut down your system and carefully install the mPCIe card.

Re-start your system. Once the computer finishes booting your new device should already be installed and ready for use; you can confirm this by launching Device Manager and looking under the "Data Acquisition" section. If, for any reason, the mPCle displays a warning icon, right-click and select "Update Driver".

¹ In Linux or OSX please refer to github.com/accesio/apci.

CHAPTER 2: INTRODUCTION

The mPCIe-DAAI16-8F is an ideal solution for adding high-speed analog I/O capabilities to any computer with an mPCIe slot.

FEATURES

- PCI Express Mini Card (MPCIe) Type F1, with latching I/O connector (double stack)
- 8×16-bit DACs capable of Current or Voltage, Waveform streaming at up to 125 ksps, each
 - O SOFTWARE SELECTABLE AS VOLTAGE OR CURRENT OUTPUT, PER CHANNEL
 - 0 TO 20, 0 TO 24, AND 4-20MA CURRENT OUTPUT RANGES
 - 5V, 10V, ±5V and ±10V voltage output ranges (with optional 20% overrange)
- 0 PER-CHANNEL OFFSET/SCALE CALIBRATION
- 16-bit, Bipolar, Differential, A/D sampling at up to $1 {
 m MHz}$
- O SOFTWARE SELECTABLE AS 8 SINGLE ENDED OR 4 DIFFERENTIAL CHANNELS
- o 7 Channel-by-channel programmable differential input ranges from $\pm 0.3125V$ up to $\pm 12V$
- ο High impedance input: 500 MΩ
- O FIFO PLUS DMA FOR EFFICIENT, ROBUST DATA STREAMING
- 8× DIGITAL I/O PINS (4 INPUTS AND 4 OUTPUTS)
- RoHS compliant standard

The mPCIe-DAAI16-8F is a 16-bit resolution D/A & A/D card with 8 DACs, 8 ADC channels, and 8 DIO. Four DAC voltage ranges (with optional 20% overrange) and 3 current ranges, with both current and voltage outputs, are software selectable.

Each ADC channel can be independently software configured to accept any of 7 input ranges.

This tiny analog I/O card provides the user with everything needed to start acquiring and controlling signals in a variety of applications. The mPCIe-DAAI16-8F data acquisition board can be used in many current real-world applications such as embedded equipment monitoring, precision PC-based and portable environmental measurements, and mobile data acquisition. The card is designed to be used in rugged industrial environments and is a double sided "F1" sized PCI Express Mini Card with a custom daughter-card stacked on top.

A HART (Highway Addressable Remote Transducer) modem option makes this device suitable for a wide array of large-scale infrastructure projects. Combine with a HART Multiplexer to control and monitor any number of connected devices.

Four digital inputs and four digital outputs are provided, with $10k\Omega$ pull-ups on the inputs for contact closure monitoring and $10k\Omega$ pulldowns on the digital outputs to avoid spurious control signals on power-up or reset.

Applications: Optical Networking, Instrumentation, Multichannel Data Acquisition and system monitoring, Automatic Test Equipment, Process Control and Industrial Automation, Power line monitoring.

CHAPTER 3: HARDWARE

This m	nanual applies to the following models:
mPCle-DAAI16-8F	mPCle, 8 16-bit D/A with 8 A/D at up to 1 msps
mPCle-DAAI16-8A	mPCle, 8 16-bit D/A with 8 A/D at up to 500 ksps
mPCle-DAAI16-8E	mPCle, 8 16-bit D/A with 8 A/D at up to 250 ksps
mPCle-DAAI12-8A	mPCIe, 8 16-bit D/A with 8 12-bit A/D at up to 500 ksps
mPCle-DAAI12-8	mPCle, 8 16-bit D/A with 8 12-bit A/D at up to 250 ksps
mPCle-DAAI12-8E	mPCle, 8 16-bit D/A with 8 12-bit A/D at up to 100 ksps

These models are full-length "F1" mPCle devices (30×50.95 mm) in a double-stack configuration and include a 9" (229mm) 37conductor cable to DB-37F. All units are RoHS compliant.

INCLUDED IN YOUR PACKAGE

9" 3-pin cable (228mm) DAC/ADC/DIO mPCIe card (double stack)

Available accessories include:

ADAP37M-MINI	37-pin Direct Connect Terminal Board
mPCle-HDW-KIT2	Mounting hardware for 2mm
mPCle-HDW-KIT2.5	Mounting hardware for 2.5mm

Contact the factory for information regarding additional accessories, options, and specials that may be available to best fit your specific application requirements, such as extended temperature, conformal coating, or alternate cable lengths, to name a few.

CHAPTER 4: CONFIGURATION SETTINGS

There are no configuration options to set. Contact the factory for customization options.

CHAPTER 5: PC INTERFACE

This product interfaces with a PC using a PCI Express Mini Card (mPCIe) connection; a small-form-factor, high-performance, rugged peripheral interconnect technology first introduced for use in laptops and other portable computers.

mPCle's small size and powerful performance, combined with perfect software compatibility with PCI and PCle peripheral designs, have led to its recent adoption as a go-to standard for embedded Data Acquisition and Control, and many other applications.

Although mPCle is a broadly-adopted industry standard, the actual connection to the computer shares a specification with mSATA: both mSATA and mPCle use the same edge-connector. In fact, well-designed PCs can automatically detect and configure their onboard connectors to work with either mPCle or mSATA devices – and, according to the standards for mPCle and mSATA they are *supposed* to do so! However, some PC manufacturers ship computers that *only* support mSATA devices. Please confirm in your PC documentation that your edge-connector is *actually* PCl Express Mini Card compliant before installing this, or any, mPCle card. Damage might occur if you install an mPCle device into a computer that only supports mSATA.

mPCIe defines mounting holes for securing the otherwise loose end of the card, so it is impossible for these cards to wiggle or flap themselves loose (which was a recurring problem with the older PCI Mini devices). Eliminating this concern for PCI Express Mini Cards is a major reason this standard has seen rapid adoption by the Data Acquisition and Control industry.

The mPCle standard, like its PCl Mini Card predecessor, was designed assuming use primarily in Laptop or Notebook and similar devices, where physical dimension is often the paramount design constraint. In Data Acquisition and Control applications low-weight combined with vibration tolerance tend to be of more concern.

CHAPTER 6: I/O INTERFACE

Custom hardware interfaces can be produced to fit your specific application requirement.

All DAC outputs, both current mode and voltage, are provided on the 20-pin header located on the top board of the double-stack. This is normally used with the 9" DB-37 cable for all analog output connections.

All ADC channels and DIO pins are provided on the 30-pin header located on the base board of the double-stack. This is normally used with the 9" DB-37 cable for all analog input and digital I/O connections.

Al Ma	ale 37	7-Pin Pinout
Pi	in	Assignment
1	20	GND
2	21	ADC Ch 0 (Ch 0+)
3	22	ADC Ch 2 (Ch 2+)
4	23	ADC Ch 4 (Ch 4+)
5	24	ADC Ch 6 (Ch 6+)
6	25	GND
7	26	DAC 0
8	27	DAC 2
9	28	GND
10	29	VCCio ¹
11	30	DAC 5
12	31	DAC 7
13	32	GND
14	33	GND
15	34	DI 2
16	35	DI 0
17	36	DO 2
18	37	DO 0
19		
	P 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	Pin 1 20 2 21 3 22 4 23 5 24 6 25 7 26 8 27 9 28 10 29 11 30 12 31 13 32 14 33 15 34 16 35 17 36 18 37

	Molex 20-pir	ı Pinc	out DAC
1	DAC 0	2	GND
3	DAC 1	4	GND
5	DAC 2	6	GND
7	DAC 3	8	GND
9	DAC 4	10	GND
11	DAC 5	12	GND
13	DAC 6	14	GND
15	DAC 7	16	GND
17	GND	18	GND
19	GND	20	GND

M	olex 30-pin P	inout	: ADC/DIO
1	ADC 0	2	ADC 4
3	ADC 1	4	ADC 5
5	GND	6	GND
7	ADC 2	8	ADC 6
9	ADC 3	10	ADC 7
11	GND	12	GND
13	COMMON	14	GND
15	GND	16	GND
17	USER VCC	18	GND
19	GND	20	DO 0
21	DO 1	22	DO 2
23	DO 3	24	DI O
25	DI 1	26	DI 2
27	DI 3	28	DGND
29	DGND	30	DGND

CHAPTER 7: SOFTWARE INTERFACE

How to use

The ADC used, the ADAS3022, is a flexible data acquisition system-on-chip that has numerous features and modes of operation, and additional modes and features are added by our advanced FPGA design.

This flexibility can seem overwhelming, but we've designed our AIOAIO.dll API to make using this ADC simple for 99% of customer use-cases, based on 30+ years of customer feedback.

We strongly recommend you ignore the register details provided in Chapter 7: Software Interface and the discussions regarding low-level control of the ADC in the second half of this chapter. Instead, simply refer to the AIOAIO Software Reference (.html) manual [link] and the source code to the variety of sample programs provided in the Software Installation Package [link].

Tip: Taking data from every channel can be as simple as calling "ADC_GetImmediateScanV(0, rangeCode, &data);", which converts all channels at the specified range and stuffs the data (as double-precision floating point Voltages) into the data array. This function can be called many thousands of times per second. Please refer to the samples and the software reference for details on this and other available API functions, including how to acquire 1MHz data via callback or polling.

Advanced Topics

BASIC, ADVANCED, AND NON-SEQUENCED MODES

The ADAS3022 uses the SEQ1:0 bits in the +38 control register to select between non-sequenced mode, basic sequence mode, and advanced sequence mode.

SEQ1	SEQ0	Mode	Description
0	0	non-Sequenced	The ADAS will acquire data from the channel specified in the INx2:0 bits, at the gain specified in the Gain2:0 bits.
0	1	Modify Basic	Allows the gain and such to be modified while running a basic sequence, without starting conversions over at CHO.
		Sequence	
1	0	Advanced	Acquires Channel 0 using the gain selected via +18 bits 2:0. Conversion-starts will automatically cycle through the channels from CH0 through
		Sequence	INx2:0, and each channel is acquired at the per-channel gain set in +18. The sequence repeats, starting at CH0 after INx2:0 is acquired.
1	1	Basic Sequence	Acquires channel 0 using the gain set in Gain2:0. Conversion-starts will automatically cycle through the channels from CH0 through INx2:0, but all channels are acquired using the gain set in Gain2:0 rather than using the gains from +18. The sequence repeats, starting at CH0 after INx2:0 is acquired.

SOFTWARE, PERIODIC, AND EXTERNAL START ADC CONVERSION TIMING MODES

ADC data can be acquired periodically, synchronous to an external digital input, or asynchronously via software command.

Single, Asynchronous: If the +10 ADC Timing divisor is zero then writing to +38 with bit 16 set (to 1) will initiate a single ADC Start Event under software control.

Periodic, Asynchronous: If the +10 ADC Timing divisor is non-zero, and the External ADC Trigger Digital Input Secondary function is *not* enabled, writing to +38 with bit 16 set will initiate a single ADC Start Event, and subsequent events will occur at the rate selected via +10's divisor. This is "software initiated periodic timed ADC" data.

External Trigger, Periodic, Synchronous: If the +10 ADC Timing divisor is non-zero, and the External ADC Trigger Digital Input Secondary function *is* enabled, writing to +38 with bit 16 set *ARMS* the card to begin the periodic collection of ADC data. No data will be collected until the selected edge occurs on the ADC Trigger input. (Refer to +44 for additional details on the Digital I/O Secondary Functions.) Once triggered, data will be collected until manually stopped by writing +38 with bit 16 clear (or various resets, etc.).

External Start, Single, Synchronous: The digital input secondary function "ADC Start" can be configured to initiate individual ADC Start Events on a selected edge input.

SINGLE AND SCAN START MODES

Each ADC Start Event can be configured to start either a Scan of channels or a single channel conversion.

Single Start Mode: Writing to +38 with bit 18 clear (to 0) selects "Single Start Mode". Each ADC Start Event, regardless of source, will acquire one channel. No subsequent conversions will occur until the next ADC Start Event.

Scan Start Mode: Writing to +38 with bit 18 set (to 1) selects "Scan Start Mode". Each ADC Start Event will acquire the full configured sequence of channels, starting with CH0 and proceeding through INx2:0, then no further data will be acquired until a subsequent ADC Start Event. The channels within this "scan" of data are acquired at the rate selected via +14. Bit 18 is ignored (assumed zero) if non-Sequenced mode is set (SEQ1:0=00) or if INx2:0==0.

Software Pro Tips:

- Use our API. Avoid accessing the card registers unless you really know you need to. Contact us for any questions, we're here to help.
- Always use Advanced Sequencer Mode.
- Always use Scan Start Mode.
- Set the periodic rate at +10, set the inside-scan channel rate at +14, configure External Trigger if you are using it, configure the per-channel gains at +18, then write to +38 to Start or Arm (in Software or ADC Trigger modes, respectively) the Periodic Scans.

Register Overview

Register	Read		Register Description
Offset [hex]	/Write	Register Name	Note: All registers must be accessed as 32-bits
+0	R/W	Resets and Power	Board and Feature Reset command bits and ADC Power-Down control bit and status
+4	W	DAC Control	DAC (LTC2664) Command Register bits
+8	W	DAC Waveform Divisor	DAC Waveform Points/second, divisor = 25 MHz / DAC Waveform Rate
+C	R	ADC Base Clock	Frequency of the ADC Sequencer Base Clock (Hz) used to calculate the ADC Rate Divisor for desired conversion rates
+10	W/R	ADC Rate Divisor	ADC Start Rate = ADC Base Clock / ADC Rate Divisor (this register)
+14	W/R	ADC Rate Divisor #2	Controls rate of channels inside each scan when running in scan-start mode
+18	W/R	ADC ADV Sequence Gain	Each nybble controls the gain code (input range) of the respective ADC channel
+20	W/R	ADC FAF Threshold	ADC FIFO Almost Full Threshold, can be enabled to generate IRQs when the threshold amount of ADC data is available in the FIFO
+28	R	ADC FIFO Count	ADC FIFO Depth: read to determine how much data is available in the FIFO
+30	R	ADC FIFO Data	ADC FIFO
+38	W/R	ADC Control	ADAS3022 and ADC Control bits
+40	W/R	IRQ Enable / Status	IRQ Latch Clear bits and IRQ Enable Control bits ÷ IRQ Latch Status and IRQ Enable Status
+44	W/R	DIO Data	16-bits of DIO Data. Must be read/written as a 32-bit DWORD value
+48	W/R	DIO Control	Digital Secondary Function enable and configuration bits
+50	RW	DAC Waveform FIFO	Write DAC Control values here to load into the DAC Waveform FIFO; read to determine how many samples are in the FIFO
+54	W	DAC Waveform DACs/Point	Write 1, 2, 3, or 4 to configure how many samples are written from the DAC Waveform FIFO to the DACs on each DAC Waveform tick
+58	R	DAC Waveform FIFO Size	Size of the DAC Waveform FIFO (+50) in number of 32-bit DAC control values (0x2000 is typical)
+68	R	Revision	FPGA code revision

All of these registers can be operated from any operating system using any programming language, using either no driver at all (kernel mode, Linux ioperm(3), DOS, etc.) or using one of the ACCES provided drivers (AIOWDM [for Windows], APCI [for Linux & OSX]), or using any 3rd party APIs such as provided with Real-Time OSes. Addresses not explicitly documented are factory reserved and should not be accessed.

REGISTER DETAILS

Register bits labeled UNUSED or RSV are reserved and should be cleared to zero in all write operations and ignored in all read operations.

Resets	Resets and Power, Offset +0 of 64-bit Memory BAR[2+3] Read/Write 32-bits only														
bit	D31 THROUGH D1	1	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0		
Name	UNUSED		RST HART	DAC4-7	DAC0-3	RST DAC	RST ADC	RST DIO	RST DAC4-7	RST DAC0-3	PD ADC	RST ADC	RST BOARD		
				CLEAR	CLEAR	FIFO	FIFO								
	RST HART: Write 1 to bit D10 to reset the (optional) HART modem.														
	DAC4-7 CLEAR:														
	DACO-3 CLEAR:	Write 1 to bit D8 to clear DACs0-3 to their pre-programmed clear code. Consult the AD5755-01 datasheet for more information.													
	RST DAC FIFO:		Writing with bit D7 set will reset the DAC Waveform FIFO, making it empty												
	RST ADC FIFO:	-					-					g away the content			
	RST DIO:	Writing	g with bit D5	set will res	et the Digit	al I/O circuit	s to their po	ower-on / re	eset state: retur	rning all I/O G	roups to input r	mode and disabling	secondary		
		functio	ins.												
	RST DAC:	-				-				-		ts with 0V on each	output.		
	PD ADC:	-										r to zero on write.			
	RST ADC:	-	-		•				e: see each ADC	Register for r	nore details				
	RST BOARD:	Writing	g a 1 will rese	et the entire	e device to	its power-or	n / reset sta	te.							

All RST and CLEAR bits are "command" bits: a 1 causes the reset to occur, and the bit is automatically cleared by the FPGA.

DAC Control, O	DAC Control, Offset +4 of 32-bit Memory BAR[1] Read/Write 32-bits only													
bit D31 D30 D29 D28 D27-D24 D23 through D0														
Name	DAC SPI busy	LDAC	DAC FIFO EMPTY	DAC FIFO HALF	unused	AD5755-01 DAC Control Bits								

Bits 31, 30, 29, and 28 are read-only.

Bit 31: If set the DAC SPI bus is busy; avoid writing to +4 while this bit is set

Bit 30: Set each time the LDAC signal is issued to the DAC IC, and cleared by reading this register (+4)

Bit 29: If set the DAC Waveform FIFO is empty

Bit 28: If set the DAC Waveform FIFO is less than half full

Please refer to the AD5755-01 Data Sheet for details regarding bits D23-D0. Note: PEC Mode is not supported.

Consult the AIOAIO Software Reference, or our sample programs' source, to avoid the hassle:

DAC_SetRange1(iBoard, iChannel, iRange);

DAC_OutputV(iBoard, iChannel, double Voltage);

DAC Waveform Rate Divisor, Offset +8 of 32-bit Memory BAR[1] Read/Write 32-bits only

Write a 32-bit divisor to control the speed at which DAC Waveform playback occurs (Points per second). Each timeout of this clock causes the DACs to simultaneously output the last loaded values; the FPGA then writes the next Point from the DAC Waveform FIFO to the DAC chip. A Point consists of 1, 2, 3, up to 8, DAC control words as specified at +54.

CCES I/O Products, Inc.	MADE IN THE USA	mPCIe-DAAI16-8F Family Manual	
	6	Rev B1c	

DAC Waveform Rate Divisor = integer(25000000 ÷ Target DAC Waveform Output Rate) Actual DAC Waveform playback (Points/second) Rate (Hz) = Base Clock ÷ DAC Waveform Rate Divisor

Base Clock, Offset +C of 32-bit Memory BAR[1] Read Only 32-bits only

Base Clock: Reading this 32-bit register returns the speed (in Hertz) of the clock used to generate ADC Start Conversions. Typical value is 50Million (50 MHz), but for broadest compatibility software should always read this register during init, and always use the read value when calculating what, if any, divisors to write to the ADC Rate Divisor and Watchdog timeout registers. Note: The DAC Waveform clock uses 25 MHz, not 50 MHz.

ADC Base Clock, Offset +C of 64-bit Memory BAR[2+3] Read Only 32-bits only

ADC Base Clock: Reading this 32-bit register returns the speed (in Hertz) of the clock used to generate ADC Start Conversions. Typical value is 50 Million (50MHz), but for broadest compatibility software should always read this register during init, and always use the read value when calculating what, if any, divisor to write to the ADC Rate Divisor register.

ADC Rate Divisor, Offset +10 of 64-bit Memory BAR[2+3] Read/Write 32-bits only

ADC Rate Divisor: Write a 32-bit divisor to the ADC Rate Divisor register to control the speed at which ADC Start events occur.

Actual ADC Start Rate (Hz) = ADC Base Clock ÷ ADC Rate Divisor

ADC Rate Divisor = integer(ADC Base Clock ÷ Target ADC Start Rate)

In ADC Scan Start mode each timeout of the +10 divisor begins a scan of channels. In all other modes the +10 rate selects the conversion rate per-channel.

ADC Rate Divisor #2, Offset +14 of 64-bit Memory BAR[2+3] Read/Write 32-bits only

ADC Rate Divisor #2: Write a 32-bit divisor to the ADC Rate Divisor #2 register to control the speed at which ADC Conversions occur within each scan when running in ADC Scan Start Modes.

In "ADC Scan" start modes only, one Scan of ADC CH0 through the channel selected in +38 INx2:0 bits occurs at the rate selected at +10. During each Scan the first channel is converted immediately, and subsequent channels are acquired at the rate selected at +14.

ADC	CAd	vanc	ed Se	equenc	er Ga	in Co	ntrol,	Offse	t +18	of 64	-bit M	emor	y BAF	R[2+3]	Read	/Writ	e 32-l	oits or	nly														
I	bit	D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Nan	ne	RSV	AIN	7 GAIN	12:0	RSV	AIN 6	5 GAIN	12:0	RSV	AIN 5	5 GAIN	12:0	RSV	AIN 4	GAI	12:0	RSV	AIN 3	B GAIN	12:0	RSV	AIN 2	GAIN	12:0	RSV	AIN	1 GAI	N2:0	RSV	AIN	0 GAI	N2:0

Each nybble configures the gain of the corresponding Analog Input channel ONLY when the ADC is running in Advanced Sequenced mode.

Table 1 - Gain Codes

GAIN2:0 "gain code"	D2	D1	DO	Range Volts <i>per pin</i> 1	Range V p-p, MAX ¹	μV/Count	Differential rejection	Notes
gain code				voits per pin-	v p-p, iviax-		V	
0	0	0	0	±12	49.15	750		The voltage range is shown as recommended max voltage per input
1	0	0	1	±5	20.48	312.5	±5.12	pin.
2	0	1	0	±2.5	10.24	156.3	±7.68	The recommendation is slightly narrower than max to allow
3	0	1	1	±1.25	5.12	75.13	±8.96	calibration.
4	1	0	0	±0.625	2.56	39.06	±9.60	The voltages that can be <i>measured,</i> between the + input and the – or
5	1	0	1	±0.3125	1.28	19.53	±9.92	COMMON inputs, are double: the ±12V range will return voltages
7	1	1	1	±10	40.96	625		between +24V and -24V, or "48V p-p".

Gain code 6 (110) is reserved and will result in undefined behavior

Note 1: Applying +V to IN+ and -V to IN- (or ADC COMMON) results in 2×V span; reversing the voltage polarity results in another 2×V span, for a total Peak-to-Peak measurement capability of 4×V p-p

ADC FIFO Almost Full IRQ Threshold, Offset +20 of 64-bit Memory BAR[2+3] Read/Write 32-bits only							
ACCES I/O Products, Inc.	MADE IN THE USA	mPCIe-DAAI16-8F Family Manual					
	7	Rev B1c					

bit	D31 through D12	D11 through D0
Name	UNUSED	FAF

FAF: Write any 12-bit value (0..4095) to set the amount of entries in the ADC FIFO allowed to accumulate before a FIFO Almost Full IRQ is fired.

In Software ADC Start mode (ADC Rate Divisor (+10) cleared to zero) the FIFO is 32-bits wide, able to hold up to 4095 conversion results (+statuses).

In all other ADC Start Modes the ADC FIFO is 64-bits wide, holds two ADC Conversions (+statuses) per FIFO entry and the FIFO thus holds 8190 conversion/status pairs. Refer to the ADC FIFO (+30) register description for more details.

ADC FI	ADC FIFO Count, Offset +28 of 64-bit Memory BAR[2+3] Read-Only 32-bits only						
bit	D31 through D12	D11 through D0					
Name	UNUSED	FIFO Count					

FIFO Count: Read FIFO Count to determine how many entries the ADC FIFO contains.

In Software ADC Start Mode (ADC Rate Divisor (+10) cleared to zero) the FIFO Count determines how many ADC Conversions (+statuses) are held in the FIFO. Read the ADC FIFO this many times to gather the acquired ADC Data.

In all other modes the FIFO Count reports the number of *pairs* of ADC Conversions are available in the FIFO. Were you to read the data from the ADC FIFO (+30) you would read two 32-bit values per FIFO Count to gather the acquired data. However, in these modes it is generally best to let DMA transfer the FIFO data, which is performed at the native 64-bit FIFO width.

ADC FI	FO Data,	Offset +30	of 64-b	it Men	nory BA	AR[2+3] Read-	Only 3	2-bits	only			
bit	D31	D30	D29	D28	D27	D26	D25	D24	D23	D22 through D20	D19	D18 through D16	D15 through D0
Name	INVALID	RUNNING	G DIO3	DIO2	DIO1	DIOO	TEMP	MUX	RSV	Channel	Diff	Gain	ADC Counts (Two's complement)
	ADC FIFO Data: Read the RAW-format ADC Conversion results (in twos-complement 16-bit form) and the associated status word.												
	INVALII	D:	lf INVA Count (n all ot	her bits	s are u	ndefir	ed and the entry	shoul	d be discarded. This	s can occur if you read from the ADC FIFO while the ADC FIFO
	RUNNI	NG:	SET ind	icates	the AD	C Sequ	iencer i	s oper	ating,	taking either peri	odic (1	timer-driven) conve	rsions or via the external ADC Start secondary digital function.
	DIO3:0	:	These f	our bit	s indic	ate the	e state o	of the o	corres	ponding digital I/0	D pin a	at the time the paire	ed ADC Conversion was sampled.
	TEMP:									om the ADAS3022 uiring the tempera		•	ensor rather than from an analog input channel. Refer to ADC
	MUX:							•					her than from the normal Analog Input Channels. Note, the you should not bother acquiring data from them.
	Channe	el2:0:	The 3 C Channe						Analog	Input the paired	ADC C	Counts were sampled	d. Refer to ADC Control (+38) for important information about the
	Diff:		SET ind Differe)C Cour	nts wei	re sam	pled in Differenti	al moo	de. Refer to ADC Co	ontrol (+38) for important information about the Channel bits re
	Gain2:():					-		le the	paired ADC Count	s wer	e sampled. Refer to	the gain code table in ADC Advanced Sequencer Gain Control
	ADC Co	 (+18) for how to interpret the Gain bits. C Counts: 16-bit two's complement ADC counts, the ADC conversion result from the samples Channel at the specified Gain, sampled in Differential or Singled-ended / Pseudo-Differential mode as indicated by the Diff bit (D19). 											
	Diagon refer to the comple program's course for details on how to translate DAW format ADC data into Valta — or skin the basels and use our AIOAIO dll ADI Library												

Please refer to the sample program's source for details on how to translate RAW-format ADC data into Volts — or skip the hassle and use our AIOAIO.dll API Library:

ADC_GetImmediateV(iBoard, pVolts, iChannel, iRange);, ADC_GetImmediateScanV(iBoard, pVolts[]); etc.

	rough D19	D18	D17	D16	D15	D14 through D12	D11	D10	D9 through	D6	D5 through D4	D3	D2	D1	DO
ne UNUSE	ED	SCAN	CONFIG	GO	RSV	INx2:0	COM	RSV	D7 Gain2:0	/MUX	SEQ1:0	/TEMP	RSV	CMS	RSV
		lexible ADC module a	ind we highly r	ecomm	end yo	u use the AIOAIO.dll-p	rovided	API to a	avoid needing to			mation.	1	1	•
						DC Start" event will ac			-		-				
CON	FIG: If CON	- IG is set then the AD	C control bits	(D15 th	rough I	D0 of this register) will	be writt	en to t	he ADAS3022						
GO:	If GO is be take		n-zero the car	d will be	egin tal	king ADC conversions of	or scans	at the i	rate set via +10;	if +10 is	zero then a single	e ADC con	versio	n or sca	n wi
INx2	:0: INx spe	cifies the individual of	channel to con	vert (in	non-se	quenced modes) or th	e last ch	annel o	of the O-INx seq	uence to	be converted.				
СОМ						nent between the IN+ measurement betwee				d or pse	udo-differential m	node). If (COM is	clear th	nen
Gain		•	-			Q1:0 bits then Gain2:0 at +18 take precedenc		-			version(s) comma	anded. If	advano	ced seq	uen
/MUX						ucted by the factory. In put (sequencer modes)			,	version w	vill be from the au	xiliary mu	ıx inpu	ts (in no	on-
SEO1	L:0: Use "0	D" for non-sequence	d mode and "1	0" for a	dvance	d sequencer mode. "	11" sets	basic s	equencer mode	. and "01	L" updates the bas	sic sequer	nce-in-	progres	is. N
		nended.				•		Sucre e		,	·				
	recom 1P: If TEM	nended. ? is clear (0) then the	conversion wi	ll be fro	m the	onboard temperature s should set this bit to	referenc					·			
	recomi 1P: If TEM input (nended. 9 is clear (0) then the sequencer modes). N	conversion wi ot recommend	ll be fro ded. Mc	m the ost user	onboard temperature	referenc 1.	ce (in n	on-sequencer m	node) or		·			
/TEM CMS:	recomi 1P: If TEM input (: Must b	nended. 9 is clear (0) then the sequencer modes). N e set if conversion w	conversion wi ot recomment ill occur slower	ll be fro ded. Mc r than 1	m the ost user kHz. M	onboard temperature is should set this bit to ust be clear if convers	referenc 1.	ce (in n	on-sequencer m	node) or		·			
/TEM CMS: Enable/Cl	recomi IP: If TEM input (: Must b ear and Sta	nended. P is clear (0) then the sequencer modes). N e set if conversion w tus, Offset +40 of 64	conversion wi ot recommend ill occur slower -bit Memory B	ll be fro ded. Mc r than 1 AR[2+3]	m the ost user kHz. M Read/	onboard temperature s should set this bit to ust be clear if convers Write 32-bits only	referenc 1. ions will	ce (in n	on-sequencer m aster than 900k	node) or 1 Hz.	the sequence will	include th		iperatui	
/TEM CMS: Enable/Cl	recomi 1P: If TEM input (: Must b ear and Sta D30 D24	nended. 2 is clear (0) then the sequencer modes). N e set if conversion w tus, Offset +40 of 64 D23 D22 D21	conversion wi ot recommend ill occur slower -bit Memory B D20 D19 D1	ll be fro ded. Mc r than 1 AR[2+3] 8 D	m the ost user kHz. M Read/ 17	onboard temperature is should set this bit to ust be clear if convers Write 32-bits only D16 D15 I	referenc 1. ions will D8 D	ce (in n occur f 7 [on-sequencer m faster than 900k	node) or T Hz. D4	the sequence will	include th	ne tem	peratur D0	re
/TEN CMS: Enable/Cl pit D31 ne WDG	recomi 1P: If TEM input (: Must b ear and Sta D30 D24 UNUSED	nended. P is clear (0) then the sequencer modes). N e set if conversion w tus, Offset +40 of 64 D23 D22 D21 EXT LDAC FOF	conversion wi ot recommend ill occur slower -bit Memory B D20 D19 D1 FAF DTO DD	ll be fro ded. Mc r than 1 AR[2+3] 8 D ONE A	m the ost user kHz. M Read/ 17 DCSTA	onboard temperature s should set this bit to ust be clear if convers Write 32-bits only	referenc 1. ions will D8 D D er	ce (in n occur f 7 [nEXT] e	on-sequencer m faster than 900k D6 D5 enLDAC enFOF	node) or Hz. D4 enFAF	the sequence will D3 D2 enDTO enDDON	include th	ne tem	peratur D0	re
/TEN CMS: Enable/Cl pit D31 ne WDG	recomi 1P: If TEM input (: Must b ear and Sta D30 D24 UNUSED us to deter	nended. P is clear (0) then the sequencer modes). No e set if conversion we tus, Offset +40 of 64 D23 D22 D21 EXT LDAC FOF mine which/if any IRC	conversion wi ot recommend ill occur slower -bit Memory B D20 D19 D1 FAF DTO DD Qs have fired (I	II be fro ded. Mc r than 1 AR[2+3, 8 D ONE A ONE A	m the ost user kHz. M Read/ 17 DCSTA L6), if t	onboard temperature is should set this bit to ust be clear if convers Write 32-bits only D16 D15 I RT ADCTRIG UNUSE	referenc 1. ions will D8 D D en ed (D31)	ce (in no occur f 7 [nEXT e 1, and w	on-sequencer m Faster than 900k D6 D5 enLDAC enFOF which IRQs are e	D4 D4 nabled (I	b3 D2 enDTO enDDON D7D0):	include th D1 IE enADO	ne tem	D0	re
/TEN CMS: Enable/Cl bit D31 be WDG d IRQ Stat	recomi IP: If TEM input (: Must b ear and Sta D30 D24 UNUSED us to deter 5:	nended. P is clear (0) then the sequencer modes). Nor e set if conversion wo tus, Offset +40 of 64 D23 D22 D21 EXT LDAC FOF mine which/if any IRC If WDG is SET then	conversion wi ot recommend ill occur slower -bit Memory B D20 D19 D1 FAF DTO DD Qs have fired (I the Watchdog	II be fro ded. Mc r than 1 AR[2+3] 8 D ONE A ONE A D23D1 ; Timer I	m the ost user kHz. M Read/ 17 DCSTA L6), if th has Bar	onboard temperature is should set this bit to ust be clear if convers <mark>Write 32-bits only D16 D15 I RT ADCTRIG UNUSE he Watchdog has Bark</mark>	referenc 1. ions will 08 D D el ed (D31) r to Wat	ce (in n occur f 7 [nEXT 6), and w chdog	on-sequencer m faster than 900k D6 D5 enLDAC enFOF which IRQs are e Control (+4C) fo	D4 enFAF nabled (I r details	D3 D2 enDTO enDDON D7D0): on using the Wate	include th D1 IE enADC chdog Tin	CSTAR1	D0 [enAD ture.	re
/TEN CMS: Enable/Cl bit D31 he WDG d IRQ Stat WDG	recomi 1P: If TEM input (. : Must b ear and Sta D30 D24 UNUSED us to deter 5:	nended. P is clear (0) then the sequencer modes). N e set if conversion w tus, Offset +40 of 64 D23 D22 D21 EXT LDAC FOF mine which/if any IRC If WDG is SET then a Functions.	conversion wi ot recommend ill occur slower bit Memory B D20 D19 D1 FAF DTO DD Qs have fired (I the Watchdog n IRQ has beer	II be fro ded. Mc r than 1 AR[2+3] 8 D ONE A ONE A D23D1 3 Timer I	m the ost user kHz. M Read/ 17 DCSTA L6), if th has Bar rom th	onboard temperature is should set this bit to ust be clear if convers Write 32-bits only D16 D15 I RT ADCTRIG UNUSE he Watchdog has Bark ked (timed out). Refe	referenc 1. ions will D8 D D en ed (D31) r to Wat nction "E	ce (in no occur f 7 [nEXT] e), and w chdog Externa	on-sequencer m faster than 900k 26 D5 enLDAC enFOF which IRQs are e Control (+4C) fo I IRQ". Refer to	D4 D4 enFAF nabled (I r details DIO Cor	D3 D2 enDTO enDDON D7D0): on using the Wate otrol (+48) for deta	include th D1 IE enADO chdog Tim ails on DIO	CSTARI ner fea D Seco	DO DO enAD ture.	re DCTF
/TEN CMS: bit D31 be WDG d IRQ Stat WDG EXT:	recomi input (: Must b ear and Sta D30 D24 UNUSED us to deter 5:	nended. P is clear (0) then the sequencer modes). Nor- e set if conversion we tus, Offset +40 of 64 D23 D22 D21 EXT LDAC FOF mine which/if any IRG If WDG is SET then If EXT is SET then a Functions. If LDAC is SET then	conversion wi ot recommend ill occur slower bit Memory B D20 D19 D1 FAF DTO DD Qs have fired (I the Watchdog n IRQ has beer an IRQ has be	II be fro ded. Mc r than 1 AR[2+3] 8 D ONE A ONE A D23D1 ; Timer I n fired fi	m the ost user kHz. M 17 DCSTA L6), if th has Bar rom th from t	onboard temperature s should set this bit to ust be clear if convers Write 32-bits only D16 D15 I RT ADCTRIG UNUSE he Watchdog has Bark ked (timed out). Refe e DIO13 Secondary Fu	reference 1. ions will D8 D D en ed (D31) r to Wat nction "E unction	ce (in no occur f nEXT e), and v chdog Externa "LDAC	on-sequencer m faster than 900k 26 D5 enLDAC enFOF which IRQs are e Control (+4C) fo I IRQ". Refer to Control (+4C) fo	D4 D4 enFAF nabled (I r details DIO Cor Control (D3 D2 enDTO enDDON D7D0): on using the Wate other of (+48) for details or	include th D1 IE enADO chdog Tim ails on DIO	CSTARI ner fea D Seco	DO DO enAD ture.	re DCTF
/TEN CMS: Dit D31 De WDG d IRQ Stat WDG EXT: LDAC	recomi input (: Must b ear and Sta D30 D24 UNUSED us to deter 5:	nended. P is clear (0) then the sequencer modes). Note tus, Offset +40 of 64 D23 D22 D21 EXT LDAC FOF mine which/if any IRC If WDG is SET then a Functions. If LDAC is SET then If FOF is SET then a	conversion wi ot recommend ill occur slower bit Memory B D20 D19 D1 FAF DTO DD Qs have fired (I the Watchdog n IRQ has been an IRQ has been	II be fro ded. Mc r than 1 AR[2+3] 8 D ONE A D23D1 ; Timer I n fired fi en fired b	m the ost user kHz. M Read/ 17 DCSTA L6), if thas Bar rom th from th	onboard temperature is should set this bit to ust be clear if convers Write 32-bits only D16 D15 I RT ADCTRIG UNUSE he Watchdog has Bark ked (timed out). Refe e DIO13 Secondary Fu	reference 1. ions will D8 D ed (D31) r to Wat nction "E unction errun: M	ce (in no occur f 7 [nEXT 6), and w chdog Externa "LDAC" lore da	on-sequencer m faster than 900k D6 D5 enLDAC enFOF which IRQs are e Control (+4C) fo I IRQ". Refer to I IRQ". Refer to Control (+4C) fo ta was acquired	D4 D4 enFAF nabled (I r details DIO Cor Control (than fit	the sequence will D3 D2 enDTO enDDON D7D0): on using the Wate atrol (+48) for details +48) for details or in the ADC FIFO.	Include the determined of the	ne tem CSTARI ner fea D Seco ondary	DO DO enAD ture.	re OCTF

DDONE: If DDONE is SET then a DMA Done IRQ has been fired.

- ADCSTART: If ADCSTART is SET then an IRQ has been fired from the DIO14 Secondary Function "ADCSTART". Refer to DIO Control (+48) for details on DIO Secondary Functions.
- ADCTRIG: If ADCTRIG is SET then an IRQ has been fired from the DIO15 Secondary Function "ADCTRIG". Refer to DIO Control (+48) for details on DIO Secondary Functions.

Bits D7 through D0 indicate if the corresponding IRQ has been enabled.

Write IRQ Status bits SET to clear the latched IRQ Status bit(s). Typically, code will read +40 and write the value to +40 to clear all detected IRQs and leave the IRQ enables unchanged. Write IRQ Enable bits SET to enable corresponding IRQ sources.

DIO Da	DIO Data, Offset +44 of 64-bit Memory BAR[2+3] Read/Write 32-bits only								
bit	D31 through D8	D7	D6	D5	D4	D3	D2	D1	DO
Name	UNUSED	DIO7	DI06	DIO5 / EXT_DIO / DAC_EXT_CLK	DIO4 / LDAC / DAC_STREAM	DIO3	DIO2	DIO1	DIOO

Read DIO Data to read the digital input pins or to readback the last commanded digital output state.

Write to DIO Data to configure the digital pin(s)' high/low state for those bits in I/O Groups configured as Outputs. SET bits will output high voltage, CLEAR bits will output GND.

Refer to DIO Control (+48) for how to configure the input vs output direction of each I/O Group.

			DIO Control, Offs	set +48 of 64-bit Mem	nory BAR[2+3] Re	ad/Write 3	32-bits o	only						
bit	D31D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16	D15D0
Name	UNUSED	edgeDAC_EXT_	CLK enDAC_EXT_CLK	edgeDAC_STREAM	enDAC_STREAM	edgeEXT	enEXT	edgeLDAC	enLDAC	edgeSTART	enSTART	edgeTRIG	enTRIG	UNUSED

Write DIO Control to enable Digital Secondary Functions, and to control the input vs output direction of each Digital I/O Group.

enDAC_EXT_CLK: SET enDAC_EXT_CLK so the DAC Streaming clock is taken from DIO 5 rather than the internal DAC Stream clock configured at the +8 register.

enDAC_STREAM: SET enDAC_STREAM to use the signal at DIO4 as a trigger to start DAC Streaming.

enEXT: SET enEXT to enable the "External IRQ" Digital Input Secondary Function on DIO 5 so the selected edge on the input will (optionally) generate IRQs.

- enLDAC: SET enLDAC to enable the "External LDAC" Digital Input Secondary Function on DIO4 so the selected edge will cause the DACs to update and optionally generate an IRQ.
- enSTART: SET enSTART to enable the "ADC Start Conversion" Digital Input Secondary Function on DIO 6 so the selected edge will cause an ADC Start Event and optionally generate an IRQ.
- enTRIG: SET enTRIG to enable the "ADC Trigger" Digital Input Secondary Function on DIO7 so the selected edge will trigger timed ADC conversions and optionally generate an IRQ. Consult the "Software Tips" section for details on using ADC Trigger.
- edgeXXX: Each Digital Input Secondary function has a configurable active edge, rising or falling. SET the corresponding edgeXXX bit to select rising edge, CLEAR the bit for falling edge.

DAC Waveform FIFO, Offset +50 of 64-bit Memory BAR[2+3] Read/Write 32-bits only

DAC Waveform FIFO: Write DAC commands to load the DAC Waveform FIFO. Generally 0x000nCCCC where n is the DAC# and CCCC is the counts. Read returns the number of control values currently in the FIFO.

DAC Waveform DACs/Point, Offset +54 of 64-bit Memory BAR[2+3] Read/Write 32-bits only

DAC Waveform DACs/Point: Write 1, 2, 3 or 4 to specify how many DACs are being used for Waveform Playback.

DAC Waveform FIFO Size, Offset +58 of 64-bit Memory BAR[2+3] Read 32-bits only

DAC Waveform FIFO Size: Read to determine the DAC Waveform FIFO size in 32-bit DAC command values. Typically 0x2000, or 8192 values.

In Windows¹, please consult the various samples (C#, Delphi, and more) to explore how to program the device. The AIOAIO Software Reference Manual.pdf provides reference material covering all AIOAIO Library APIs.

5 /	r er express with eard hag and hay bata
Under certain circumstances the following information might prove useful:	BAR[n] Description
	1:0 DMA Registers
A NOTE ABOUT PERFORMANCE	3:2 I/O Registers

The PCI Express bus and the PCI Express Mini Card standard are capable of very high bandwidth, but the latency per-transaction is roughly the same as all the other busses – it hasn't improved in decades. This means you can expect to usually see a not-less-than 1MHz transaction rate. Typical rates exceed 3MHz [0.3µs].

Unfortunately, modern Operating Systems have introduced a new source of latency, the kernel / userland division. Application code runs in userland, which must transition to the kernel in order to perform any hardware operation. This transition adds quite a lot of latency, which varies between different OSes, motherboards and revisions thereof, etcetera. A Windows XP system can see an additional 7µs per transaction; a modern computer might see 3µs or less. Any transaction from the kernel itself, however, avoids this additional overhead.

Real-time operating systems will enable the highest transaction rates possible, all the way up to the hardware limits.

 PCI Express Mini Card Plug-and-Play Data

 Vendor / Device ID
 Card Type

 0x494F / 0x0100
 mPCIe DIO Base

Available Downloads

The latest information can always be found on the product page on the website. Here are some useful links:

	Links and useful downloads
Main site	http://accesio.com
Product's page	accesio.com/mPCle-DAAI16-8F
This manual	accesio.com/MANUALS/mPCIe-DAAI16-8F.pdf
Windows Software Install Package	accesio.com/files/packages/mPCIe-DAAI16-8F Install.exe

¹ In Linux or OSX please refer to the documentation at github.com/accesio/apci.

CHAPTER 8: SPECIFICATIONS

PC Interface

PCI Express Mini Card Type F1 "Full Length", double-stack

Analog Outputs

Number	8			
Туре:	Single-ended Voltage, Current			
Resolution:	16-bit			
Voltage Ranges:	0-5V, 0-10V, ±5V, ±10V			
	(with software enabled 20% overrange)			
Current Ranges:	4-20mA, 0-20mA, 0-24ma			
Settling Time	20us typical, +/-10V (+/-1LSB at 16 bits)			
Output Current	max ±10mA per channel			

Analog Inputs	5
ADC Type	Successive approximation
Resolution	16-bit differential bipolar ADC
Sampling rate	1 MSPS aggregate
Number of channels	8 SINGLE-ENDED or 4 DIFFERENTIAL (software selectable)
Differential Bipolar	±12, ±10, ±5, ±2.5, ±1.25, ±0.625, ±0.3125V
Ranges (V)	with 0, 0, ±5.12, ±7.68, ±8.96, ±9.60, ±9.92V common mode
	rejection, respectively
4-20mA or 10-50mA	Factory options
Int Nonlinearity Error	±0.6 LSB to ±1.5 LSB depending on gain
No Missing Codes	16 bits
Input Impedance	>500ΜΩ
A/D Start Sources	Software Start, Timer Start, External Start, Externally
	Triggered Timer Start
A/D Start Types	Single Channel or Scan
Overvoltage Protection	Current limiting through 2 KΩ
Crosstalk	-120dB @ 10kHz

		Operating	0°C to +70°C				
Temperature		operating	-40°C to +85°C (-T option)				
		Storage	-40°C to +105°C				
Humidity			5% to 95% RH, non-condensing				
		Length	50.95mm (2.006")				
Dimensions		Width	30.00mm (1.181")				
		Height	0.5 " (2 card stack plus connector)				
Weight		12g					
Digital Inp	out /	Outpu	t Interface				
Digital Bits			4 inputs and 4 outputs				
Performance			1 μs per transaction max				
	(~3.5µs in non-kernel Windows, typ.)						
Digital Inputs	Logic High 2.0V to 3.3VDC (5VDC tolerant)						
		Logic Low 0V to 0.8V					
Digital Outputs		Logic Hi	gh 2.0V (min) 24mA source				
		Logic Lo	ow 0.55V (max) 24mA sink				
Power							
Power required		+3.3VDC @ 1	150mA (idle)				
(from mPCle Bus)		+1.5VDC @ 2	200mA (idle)				
I/O Interfa	CA (Connec	tors				
DAC	On car	-	Molex 5011902017 20-pin latching				
450 . 510	Mating		Molex 5011892010 20-pin latching				
ADC + DIO	On car		Molex 5011903017 30-pin latching				
	Mating	5	Molex 5011893010 30-pin latching				
Model Opt	ions	;					
-т		Extended Te	mperature Operation (-40° to +85°C)				
-l or -lD		4-20mA inpu	its (single-ended or differential)				
-н		One HART m	odem channel				
-Sxx		Special confi	gurations (10-50mA inputs, input voltage				
		dividers, conformal coating, etc.)					

Environmental

CHAPTER 9: CERTIFICATIONS

CE & FCC

These devices are designed to meet all applicable EM interference and emission standards. However, as they are intended for use installed on motherboards, and inside the chassis of industrial PCs, important care in the selection of PC and chassis is important to achieve compliance for the computer as a whole.

UL & TUV

No AC or DC voltages above 31V are consumed or produced during normal operation of this device. This product is therefore exempt from any related safety standards. Use it with confidence!

ROHS / LEAD-FREE STATEMENT

All models are produced in compliance with RoHS and various other lead-free initiatives.

WARNING

A SINGLE STATIC DISCHARGE CAN DAMAGE YOUR CARD AND CAUSE PREMATURE FAILURE! PLEASE FOLLOW ALL REASONABLE PRECAUTIONS TO PREVENT A STATIC DISCHARGE SUCH AS GROUNDING YOURSELF BY TOUCHING ANY GROUNDED SURFACE PRIOR TO TOUCHING THE CARD. ALWAYS CONNECT AND DISCONNECT YOUR FIELD CABLING WITH THE COMPUTER POWER OFF. ALWAYS TURN COMPUTER POWER OFF BEFORE INSTALLING A CARD. CONNECTING AND DISCONNECTING CABLES, OR INSTALLING CARDS, INTO A SYSTEM WITH THE COMPUTER OR FIELD POWER ON MAY CAUSE DAMAGE TO THE I/O CARD AND WILL VOID ALL WARRANTIES, IMPLIED OR EXPRESSED.

WARRANTY

Prior to shipment, ACCES equipment is thoroughly inspected and tested to applicable specifications. However, should equipment failure occur, ACCES assures its customers that prompt service and support will be available. All equipment originally manufactured by ACCES which is found to be defective will be repaired or replaced subject to the following considerations:

GENERAL

Under this Warranty, liability of ACCES is limited to replacing, repairing or issuing credit (at ACCES discretion) for any products which are proved to be defective during the warranty period. In no case is ACCES liable for consequential or special damage arriving from use or misuse of our product. The customer is responsible for all charges caused by modifications or additions to ACCES equipment not approved in writing by ACCES or, if in ACCES opinion the equipment has been subjected to abnormal use. "Abnormal use" for purposes of this warranty is defined as any use to which the equipment is exposed other than that use specified or intended as evidenced by purchase or sales representation. Other than the above, no other warranty, expressed or implied, shall apply to any and all such equipment furnished or sold by ACCES.

TERMS AND CONDITIONS

If a unit is suspected of failure, contact ACCES' Customer Service department. Be prepared to give the unit model number, serial number, and a description of the failure symptom(s). We may suggest some simple tests to confirm the failure. We will assign a Return Material Authorization (RMA) number which must appear on the outer label of the return package. All units/components should be properly packed for handling and returned with freight prepaid to the ACCES designated Service Center, and will be returned to the customer's/user's site freight prepaid and invoiced.

COVERAGE

FIRST THREE YEARS: Returned unit/part will be repaired and/or replaced at ACCES option with no charge for labor or parts not excluded by warranty. Warranty commences with equipment shipment.

FOLLOWING YEARS: Throughout your equipment's lifetime, ACCES stands ready to provide on-site or in-plant service at reasonable rates similar to those of other manufacturers in the industry.

EQUIPMENT NOT MANUFACTURED BY ACCES

Equipment provided but not manufactured by ACCES is warranted and will be repaired according to the terms and conditions of the respective equipment manufacturer's warranty.

DISCLAIMER

The information in this document is provided for reference only. ACCES does not assume any liability arising out of the application or use of the information or products described herein. This document may contain or reference information and products protected by copyrights or patents and does not convey any license under the patent rights of ACCES, nor the rights of others